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I. THE VARIATIONAL PRINCIPLE

A. The approximate wavefunction

In quantum mechanics, the main task is to solve the Schrödinger equation.

Ĥψ = Eψ (1)

The Schrödinger equation is exactly solvable for a very narrow class of systems. In cases where the exact solution cannot
be attained, the wavefunction may be approximated by a form that is easier to handle mathematically

φ ≈ ψ (2)

In most cases, we are interested in the ground state of the system, which we shall denote by ψ0 yielding the ground state
energy, E0. The excited states of the system will be denoted by {ψ1, ψ2, · · · } with corresponding energies {E1, E2, · · · }.
In what follows, we will be interested in obtaining an approximation to ψ0

Unless we are very lucky, the approximate wavefunction φ will no longer be an eigenvalue of the Hamiltonian operator,
Ĥ . The quality of the approximation is assessed based on how close the expectation value of Ĥ for ψ given by

Ẽ =
〈φ|Ĥ |φ〉
〈φ|φ〉 (3)

comes to the actual energy eigenvalue, E0. Assuming that the eigenstates of Ĥ form a complete basis set, we may expand
any other wavefunction of the system in terms of them. This observation applies also to our approximation, φ. We therefore
write down the following expansion

|φ〉 =
∑

n

cn|ψn〉 (4)

where cn are the expansion coefficients. The eigenstates {|ψn〉} are assumed to be orthonormal. This assumption does not
cause us to lose any generality because any complete set of eigenstates may be constructed to be orthonormal. Thus, the
following property is satisfied

〈ψn|ψm〉 = δnm (5)

We make the further assumption that the eigenvalues, {En} are labeled in an increasing order, i.e.

E0 ≤ E1 ≤ E2 ≤ · · · (6)
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Substituting Eq. 4 into Eq. 3, we obtain the following

Ẽ =
〈φ|Ĥ |φ〉
〈φ|φ〉 =

∑

nm c∗ncm〈ψn|Ĥ |ψm〉
∑

nm c∗ncm〈ψn|ψm〉 (7)

=

∑

nm c∗ncmEn〈ψn|ψm〉
∑

nm c∗ncm〈ψn|ψm〉 =

∑

n |cn|2En
∑

n |cn|2
(8)

The last two equalities are a result of the fact that {|ψn〉} are eigenstates of Ĥ and of orthonormality as stated in Eq. 5.
If we now substitute all En in Eq. 8 with E0, we have

Ẽ =

∑

n |cn|2En
∑

n |cn|2
≤

∑

n |cn|2E0
∑

n |cn|2
= E0 (9)

where Eq. 6 has been utilized. We thus arrive at the central result that makes the variational method possible and practical:

Any approximation to the ground state wavefunction will yield an expectation value of the Hamiltonian that is greater
than or equal to the ground state energy. Equality is satisfied only in the case that the approximate wavefunction is also a

ground state wavefunction.

In practice, the approximate wavefunction is written in terms of one or more parameters,

φ = φ(p1, p2, · · · , pN). (10)

The set of parameters that yield the best estimate to the ground state energy within the limits of the chosen form of φ
satisfies

∂Ẽ(p1, p2, · · · , pN )

∂p1
=
∂Ẽ(p1, p2, · · · , pN )

∂p2
= · · · =

∂Ẽ(p1, p2, · · · , pN )

∂pN
= 0 (11)

B. Variation with respect to coefficients and Lagrange multipliers

A very important class of electronic structure methods have variational origin. These methods make the initial assumption
that the approximate wavefunction is a sum of functions satisfying intuitive properties and makes a variation over the
expansion coefficients. Let us assume that the approximate wavefunction for a given system may be expanded in terms of
a particular set of orbitals. Because we cannot work with an infinitely many number of such orbitals we truncate the sum
and just consider the first N terms :

φ(~x) =
N∑

i=1

ciχi(~x) (12)

For each k, we would like the above expansion to satisfy the minimization condition, i.e.

∂

∂c∗k

〈φ|Ĥ |φ〉
〈φ|φ〉 . (13)

In addition, we require the approximate wavefunction to remain normalized

〈φ|φ〉 = 1 (14)

which then allows us to write rewrite Eq. 13 as

∂

∂c∗k
〈φ|Ĥ |φ〉 = 0 (15)

We may in fact, satisfy both Eq. 13 and Eq. 14 by introducing a new quantity

K = 〈φ|Ĥ |φ〉 − λ[〈φ|φ〉 − 1] (16)
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and extending the minimization property to include the extra parameter λ,

∂K

∂c∗k
=
∂K

∂λ
= 0 (17)

Inserting Eq. 16 into Eq. 17 immediately yields

〈φ|φ〉 − 1 = 0 (18)

and proves that minimizing K with respect to all of the parameters involved satisfies both of the conditions that we were
aiming to satisfy. This method of introducing new variables into the problem to satisfy constraints is often used in classical
and quantum mechanics. We may introduce as many variables into the problem as there are constraints. These variables
are called Lagrange multipliers. The Lagrange multipliers are introduced as arbitrary parameters initially, however we shall
see later on that they may correspond to physically meaningful quantities.

Inserting the expansion in Eq. 12 into Eq. 15 yields

∂

∂c∗k



〈
∑

i

ciχi|Ĥ |
∑

j

cjχj〉 − λ



〈
∑

i

ciχi|
∑

j

cjχj〉 − 1









=
∂

∂c∗k

∑

i,j

c∗i cj [〈χi|Ĥ |χj〉 − λ〈χi|χj〉]

=
∑

j

cj[〈χk|Ĥ|χj〉 − λ〈χk|χj〉] = 0 (19)

Rearranging Eq. 19, we obtain

∑

j

〈χk|Ĥ |χj〉cj = λ
∑

j

〈χk|χj〉cj (20)

which we recognize immediately as a generalized eigenvalue equation

H ·C = λ · S ·C (21)

where H and S are the matrix representations of the Hamiltonian and overlap operators and their elements are defined by.

Hnm = 〈χn|Ĥ |χm〉
Snm = 〈χn|χm〉

(22)

λ in Eq. 21 corresponds to a diagonal matrix whose elements on the diagonal are the eigenvalues.
If we use N basis functions to expand the trial function φ, Eq. 21 then gives N eigenvalues. But what do the eigenvalues

correspond to? In order to see that let’s sum both sides of Eq. 20 and isolate λ :

λ =

∑

j,k c
∗

kcj〈χk|Ĥ|χj〉
∑

j,k c
∗

kcj〈χk|χj〉
=

〈φ|Ĥ |φ〉
〈φ|φ〉 . (23)

Eq. 23 implies that each of the N eigenvectors correspond to a series of expansion coefficients yielding different φ’s and each
λ corresponds to a different expectation value. The eigenvector corresponds to the smallest eigenvalue then corresponds
to the best φ and the smallest eigenvalue itself is the closest approximation to the ground state energy for the approximate
form in Eq. 12.

1. An example : Delta-function potential

As discussed above, one can imagine solving a variational problem adopting two different but equivalent strategies :

1. Assume a single wavefunction form having many parameters and minimize over the parameters



4

2. Assume a linear combination of wavefunctions without any parameters and minimize over the coefficients.

The second strategy is usually prefered in all but the simplest systems, both because the introduction of the variational
parameters is more easily controlled and also becuase it results in an eigenvalue problem that has a straightforward solution.
In the example below we are going to compare these two different families of solutions.

Question 1 : A very simple model for the potential seen by a hydrogen electron due to the nucleus is a single delta
function VH(x) = −√

πδ(x). Make an estimate to the ground state energy assuming that the approximate wavefunction
φα(x) = exp(−αx2/2).

Solution : First let us write the one-dimensional Hamiltonian using atomic coordinates (~ = me = 1), which we’ll see
in detail later.

Ĥ = −1

2

d2

dx2
︸ ︷︷ ︸

T̂

+ (−
√
πδ(x))

︸ ︷︷ ︸

V̂

(24)

The calculation of the energy requires the evaluation of a good deal of Gaussian-like integrals. We will therefore first
remind ourselves of some simple identities :

∫
∞

−∞

e−βx2

dx =
√
πβ−1/2 (25)

∫
∞

−∞

x2e−βx2

dx = − ∂

∂β

∫
∞

−∞

e−βx2

dx = −∂(
√
πβ−1/2)

∂β
=

1

2

√
πβ−3/2 (26)

Another identity that would make our life easier concerns the kinetic energy. For a given wavefunction, the kinetic energy
may be written as :

T = −1

2

∫
∞

−∞

φdx∗(x)
d

dx2
φ(x)dx =

1

2

∫
∞

−∞

| dxφ′(x)|2 (27)

This result is obtained by employing integration by parts and taking the resulting surface term to zero.
The potential energy is much more easily calculated since it is just a delta function

V = −
√
π

∫
∞

−∞

δ dx(x)e−αx2

dx = −
√
π (28)

Finally putting everything together, we obtain the α-dependent variational energy as

Ẽ(α) =
1

2
α− α1/2. (29)

By taking the derivative with respect to α of Eq. 29, we find that the value of α which minimizes this energy is α = 1
and the corresponding minimum energy is E(α = 1) = − 1

2
Question 2 : Consider the same delta potential as in Question 1. This time, make an estimate to the ground state

energy assuming that the approximate wavefunction is a linear combination of two Gaussian functions of different width,

φ(x) = c1e
−x2/2 + c2e

−2x2/2.
Solution : In accordance with Eq. 21, we need to first construct the the Hamiltonian and overlap matrices for the

set of two functions in the linear expansion above, φ1(x) = e−x2/2 and φ2(x) = e−2x2/2. Let’s see how we construct the
matrix elements with an example :

H11 = T11 + V11 = 〈χ1|T̂ |χ1〉 + 〈χ1|V̂ |χ1〉

=
1

2

∫
∞

−∞

x2e−x2

dx−
∫

∞

−∞

√
πδ(x)e−x2

dx =
1

2

√
π

2
−
√
π = −

√
π

2

S11 = 〈χ1|χ1〉 =

∫
∞

−∞

e−x2

dx =
√
π (30)

When all the matrix elements are calculated we obtain the following generalized eigenvalue equation

√
π

(
1/2 (2/27)1/2 − 1

(2/27)1/2 − 1
√

1/2 − 1

) (
c1
c2

)

=
√
π

(
1 (2/3)1/2

(2/3)1/2
√

1/2

) (
c1
c2

)

(31)

This generalized eigenvalue equation can be solved using algorithms available in software such as Matlab or may be
hand-coded. Below is an excerpt from an Octave (Matlab clone for Linux) session.
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octave:1> a=(2/27)^(1/2)
a = 0.27217

octave:2> b=(2/3)^(1/2)
b = 0.81650

octave:3> H=[0.5 a-1;
> a-1 sqrt(1/2)-1];

octave:4> H
H =

0.50000 -0.72783

-0.72783 -0.29289

octave:5> S=[1 b;
> b sqrt(1/2)];

octave:6> S
S =

1.00000 0.81650

0.81650 0.70711

octave:7> [AA,BB,Q,Z,V,W,lambda]=qz(H,S);

octave:8> V
V =

-0.28422 -0.85324

-1.00000 1.00000

octave:9> lambda
lambda =

-0.53212

31.42433

The algorithm used in the above calculation is called QZ decomposition and the resulting eigenvalues are contained in the
variable lambda. The ground state energy is given by the lower of the two eigenvalues, giving an energy slightly smaller
than the one found in the first question. By the variational principle discussed in these notes, this energy has to be a better
approximation to the true ground state energy. The coefficients c1 and c2 are contained in the columns of the eigenvector
V and we see that for the ground state wavefunction, χ1 gives a much smaller contribution than χ2.

II. CONCEPTS IN PERIODIC SYSTEMS

A. Periodicity and crystals

A crystal is a periodic repetition of a set of nuclei in space. It is completely specified by the positions of the nuclei,
known as the basis in one repeat unit and the translation vectors.

Crystal structure = Bravais lattice + basis

where the term Bravais lattice refers to the lattice generated by the periodic repetition of a single nuclear posi-
tion.
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~a1

~τ1 ~τ2

~a2

In the figure above, we see a lattice of black and white atoms. These could be B and N atoms respectively for a BN-sheet.
Using one of the equivalent unit cells (hashed area) and combinations of the unit vectors, ~a1 and ~a2, we can generate the
entire lattice.

A general translational vector in a periodic lattice can be written as the sum of integer multiples of unit vectors,

~T (~n) = ~T (n1, n2, n3) = n1~a1 + n2~a2 + n3~a3 (32)

where the three unit vectors ~ai need not be orthonormal. In fact, in the figure above, we see that the two unit vectors
spanning the space are not orthonormal.

The lattice vectors do not say anything about how many atoms there are in the unit cell and where they are located.
This information is given by the basis vectors, which are denoted by ~τ1 and ~τ2 in the above picture. While there are at
most three lattice vectors for each unit cells, each unit may contain an arbitrary number of atoms in its basis.

B. Reciprocal space

Solids are obviously finite materials with bounding surfaces. However, for practical purposes, we treat them as infinite
systems satisfying specific boundary conditions[1], which impose periodicity in all three dimensions,

Ψ(~r) = Ψ(~r +N1~a1) = Ψ(~r +N2~a2) = Ψ(~r +N3~a3) (33)

where Ni are the numbers of unit cells in each of the three directions along the lattice vectors. Such boundary conditions
are referred to as Born-von Karman boundary conditions.

The long-range periodicity described above is not the only kind of periodicity we have in a crystal. The crystal has
another symmetry on a much shorter scale, namely the lattice vectors. Any function defined for a crystal, such as the
electron density, is bound to be periodic, repeating itself with the same translation vectors as those that span the lattice.
Thus,

f(~r + ~T (n1, n2, n3)) = f(~r). (34)

where ~T = n1~a1 + n2~a2 + n3~a3 is a translation vector.
Such periodic functions lend themselves easily to Fourier transform. Under certain conditions, it becomes more advan-

tageous to deal with the Fourier components of such systems rather dealing with them in real space. The forward Fourier
transform is conventionally defined as

f(~q) =
1

Ωcrystal

∫

Ωcrystal

d~rf(~r) exp(i~q · ~r). (35)

where Ωcrystal is the volume of the crystal. The Born-von Karman conditions set constraints on the allowed wavevectors,
~q, which we may use while determining the Fourier components. This may easily be seen by adding a translation vector,
Ni~ai to ~r in Eq. 33 and making use of Eq. 35,

f(~q) =
1

Ωcrystal

∫

Ωcrystal

d~rf(~r +N1~a1) exp(i~q · (~r +N1~a1)) =
exp(i~q · (N1~a1))

Ωcrystal

∫

Ωcrystal

d~rf(~r) exp(i~q · ~r) (36)

Comparing Eq. 35 and Eq. 36, we see that exp(i~q · (N1~a1) = 1. The same argument may be applied to the directions of
the other two lattice vectors, yielding the following restriction on the wavevectors ~q.

~q · ~ai =
2πni

Ni
where ni = 0, 1, 2, · · · , Ni − 1 (37)
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We thus have the familiar situation that confinement causes the wavevectors to be quantized (remember particle in a box).
Next, we make use of the periodicity on the scale of the lattice constants. For a function f having this sort of periodicity,
Eq. 35 may be written as

f(~q) =
1

Ωcrystal

∑

n1,n2,n3

∫

Ωcell

d~rf(~r) exp(i~q · ~r)

=
1

Ncell

∑

n1,n2,n3

exp
[

~q · ~T (n1, n2, n3)
] 1

Ωcell

∫

d~rf(~r) exp(i~q · ~r)

=
1

Ncell

∏

i

∑

ni

exp[~q · (ni~ai)]
1

Ωcell

∫

d~rf(~r) exp(i~q · ~r) (38)

where we make use of the fact that the integral over the volume of the crystal can be broken down into integrals of
identical crystals. Consider one of the sums over {ni} :

Ni−1∑

ni=0

(
ei~q·~ai

)ni
=

1 − e
2π integer

Ni
Ni

1 − e
2πi integer

Ni

(39)

by Eq. 33 and the use of a geometric series. Eq. 39 gives zero unless

e~q·~ai = 1 ⇒ ~q · ~ai = 2πm (40)

where m is an integer. Thus, periodiity at this small scale implies a new selection rule for the allowed wavevectors, ~q. The
space spanned by the allowed, discrete set of {~q} that satisfy Eq. 40 is called the reciprocal lattice. They are referred to as
a lattice because just like lattice vectors, they define a regular array of atoms with a well-defined periodicity. Any point in
the reciprocal lattice can be expressed in terms of a set of minimal set of ~q’s which are defined by

bi · ~aj = 2πδij . (41)

An arbitrary point on the lattice is then given by

~G(m1,m2,m3) = m1
~b1 +m2

~b2 +m3
~b3. (42)

One way to satisfy Eq. 41 is to construct ~bi’s such that they obey

~bi = 2π
~aj × ~ak

~ai · (~aj × ~ak)
(43)

The term on the denominator is numerically equal to the volume of the unit cell in real space. For each ~G in Eq. 42, the
Fourier transform of the periodic function can then be written as

f(~G) =
1

Ωcell

∫

Ωcell

d~rf(~r)ei ~G·~r. (44)

1. An example : Face-centered cubic lattice and its Brilliouin zone

A face-centered cubic (fcc) lattice is one where the atoms are located on tha corners of a cube as well as on the face
diagonals. The primitive unit cell is tus given by the following lattice vectors :

~a1 = a(
1

2
,
1

2
, 0)

~a2 = a(
1

2
, 0,

1

2
) (45)

~a3 = a(0,
1

2
,
1

2
)
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Using the definition in Eq. 43, we find that the reciprocal lattice vectors are

~b1 =
2π

a
(1, 1,−1)

~b2 =
2π

a
(1.− 1, 1) (46)

~b3 =
2π

a
(−1, 1, 1)

Note that the reciprocal vectors that belong to the fcc lattice define a body-centered cubic (bcc) lattice in the reciprocal
space.

C. The Brilliouin Zone

From Eq. 44, one easily sees that there is a certain periodicity also in the reciprocal space, that is

f(~G+mi
~bi) = f(~G). (47)

Thus it makes sense to define a unit cell also in reciprocal space beyond which f repeats itseld. Such a unit cell is already
widely used in literature and it is called the Brillioun zone. The Brilliouin zone is defined by the area surrounded by the
planes that are perpendicular bisectors of the vectors from the origin to the reciprocal lattice points.
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D. Bloch’s theorem

In a single-electron picture, the Hamiltonian is invariant under lattice translations. Thus the Hamiltonian commutes with
the translation operator

[Ĥ, T̂~n] = 0 where T̂ = ~n1~a1 + ~n2~a2 + ~n3~a3. (48)

From elementary quantum mechanics, e remember that operators that commute share a common set of eigenfunctions.
Such a common set may thus be found also for Ĥ and T̂n. Let’s consider in particular, ~n1 = (1, 0, 0). The Born-von
Karman conditions require that the eigenfunctions remain unchanged if the translation operator is applied N1 times

T̂~n1
ψ(~r) = (t~n1

)N1ψ(~r) = ψ(~r) (49)

where t~n1
is the eigenvalue of the translation operator T̂~n1

ψ(~r). The requirement

(t~n1
)N1 = 1 (50)



9

is satisfied for eik where k is, at this point, just a real number. Eq. 50, on the other hand, dictates that

eikN1 = 1 ⇒ kN1 = 2πn1 ⇒ k =
2πn1

N1
(51)

The same relation may be written by a general k restricted to the first Brillioun zone

~k =
n1

N1

~b1 +
n2

N2

~b2 +
n3

N3

~b3 (52)

We finally arrive at Bloch’s theorem which states that the eigenfunctions of a lattice-periodic Hamiltonian must satisfy

T̂~nψ(~r) = ei~k·T̂~nψ(~r). (53)

Bloch’s theorem states that eigenstates of a periodic Hamiltonian pick up a phase when translated by a translation vector
and may thus be labeled by the wavevector that characterizes the phase factor. In particular, Eq. 53 by wavefucntions
written as

ψ~k(~r) = ei~k·~ru~k(~r) (54)

where u~k(~r) is a lattice periodic function with

u~k(~r + ~T~n) = u~k(~r). (55)

Eq. 54 is an equivalent statement of Bloch’s theorem. Let’s illustrate this with the following picture in one dimension.

 0

 2

 4

 6

 8

 0  1  2  3  4  5  6

x

u_k
e^(ikx), k=pi

psi_k

The bottommost line is a lattice periodic wavefunction of period a = 1 in some units. The line in the middle is the phase
factor eikx for k = π/2a and the topmost curve is the wavefunction that is their product (its real part to be more precise).
As you see, unlike the electron density, the wavefunction need not have the periodicity of the lattice. It is still required
however to obey the Born-von Karman boundary conditions.

The ability provided by the Bloch theorem to break down the wavefunction in to a lattice-periodic function u~k and a

phase factor allows us to work with a reduced, wavevector-dependent Hamiltonian. Applying the real Hamiltonian Ĥ of
the system on to the wavefunction given in Eq. 54, we have[2]

Ĥψi,~k(~r) = ǫi,~kψi,~k(~r)

Ĥei~k·~rui,~k(~r) = ǫi,~ke
i~k·~rui,~k(~r) (56)
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Multiplying the second line in Eq. 56 by e−i~k·~r, we have

e−i~k·~rĤei~k·~rui,~k(~r) = ǫi,~kui,~k(~r)

Ĥ~kui,~k(~r) = ǫi,~kui,~k(~r) (57)

where Ĥ~k = e−i~k·~rĤei~k·~r. It is therefore possible to scan the Brillioun zone by writing and solving a new Hamiltonian for

each wavevector. Each Ĥ~k will yield a spectrum of eigenvalues and in the limit of large crystal dimension, these eigenvalues
will merge into a continuous graphical representation of eigenvalues, which is called the band structure. The band structure
is a very important tool for deciding upon the electronic properties of a crystal.

1. An example : Tight-binding model for atoms on a chain

In order to illustrate the arguments we have introduced above, let’s see a very simple one-dimensional example [3].
Assume that we have a one-dimensional arrangement of infinitely many atoms on a chain and assume Born-van Karman
boundary conditions with a period of N atoms.

We are going to employ what is known as the tight-binding model where each wavefunction of the whole crystal can be
expanded as a linear combination of atomic orbitals located on each of the atoms.

ψ(~r) =
∑

n,l

cn,lφl(~r − ~Rn) (58)

where {φl(~r)} could refer to a single orbital or a collection of orbitals, denoted by angular momentum orbital number l.
When dealing with silicon, for instance, it is sufficient to include only the s (l=0) and p (l=1) orbitals, since they are the
only ones that participate in bonding, while describing a Cu crystal would require the inclusion of d (l=2) orbitals as well.

For our simple example, we will only consider the s-orbitals as well. We then switch to the matrix representation of Ĥ and
hS in the atomic orbital basis

Hnm = 〈φn|Ĥ |φm〉
Snm = 〈φn|φm〉 (59)

where now the index n represents the atom where the orbital is located and the orbital angular momentum has been
dropped. Furthermore, we also assume that the orbitals that are located on different atoms do not overlap sufficiently so
that the overlap operator hS takes the form of identity in the representation in Eq. 59.

In tight-binding calculations, the matrix elements above is not actually calculated but is parametrized. The parameters
are fitted to reproduce such material properties as lattice constants and elastic moduli. We will assume the following
over-simplified, second nearest neighbor model :

Hnm =







t if n = m

h1 if n = m∓ 1

h2 if n = m∓ 2

0 otherwise

(60)

where h1 > h2. This means that the interaction is only confined to the neighbors that are separated by at most two lattice
sites. The final point to remember is that since we assume a periodicity of N , the atoms labeled 1 and N are regarded as
immediate neighbors and atoms labeled 2 and N are regarded as second nearest neighbors (same argument goes for pairs
1-N − 1 and 2-N).

As an example, for t = −1.0, h1 = −0.5 and h2 = −0.3, the Hamiltonian matrix is given by

H =


















−1.0 −0.5 −0.3 0.00 0.00 0.00 0.00 0.00 −0.3 −0.5
−0.5 −1.0 −0.5 −0.3 0.00 0.00 0.00 0.00 0.00 −0.3
−0.3 −0.5 −1.0 −0.5 −0.3 0.00 0.00 0.00 0.00 0.00
0.00 −0.3 −0.5 −1.0 −0.5 −0.3 0.00 0.00 0.00 0.00
0.00 0.00 −0.3 −0.5 −1.0 −0.5 −0.3 0.00 0.00 0.00
0.00 0.00 0.00 −0.3 −0.5 −1.0 −0.5 −0.3 0.00 0.00
0.00 0.00 0.00 0.00 −0.3 −0.5 −1.0 −0.5 −0.3 0.00
0.00 0.00 0.00 0.00 0.00 −0.3 −0.5 −1.0 −0.5 −0.3
−0.3 0.00 0.00 0.00 0.00 0.00 −0.3 −0.5 −1.0 −0.5
−0.5 −0.3 0.00 0.00 0.00 0.00 0.00 −0.3 −0.5 −1.0


















(61)
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where the periodic pattern is easily recognized. The eigenvalues of this matrix are

Λ =
(
−2.60 −1.99 −1.99 −0.82 −0.82 −0.60 −0.38 −0.38 −0.21 −0.21

)
(62)

and give the electronic spectra of the one-dimensional chain. The corresponding eigenvectors give the coefficints in Eq. 58.
For a system of 10 atoms, a 10×10 matrix can easily be dealt with. But for larger systems and more complicated

interactions, it is imperative to utilize the periodicity of the system via Bloch’s theorem. To this end, let’s rewrite the
wavefunction in Eq. 58 in the Bloch form

ψk(~r) =
∑

n

eiknφ(~r − ~Rn) (63)

where the k = 0, 2π
N , 4π

N · · · (N−2)2π
N . It is then easy to prove (see Springborg) that the Hamiltonian is diagonalized by this

form of the wavefunction and moreover, the overlap matrix is still unity. This implies that the eigenvalue for each k is
simply given by

εk =
∑

n

eik(n−1)〈φn|H |φ1〉 (64)

which yields the identical spectrum as displayed above in Eq. 62.
Obtaining the eigenvalues as a function of k gives us the opportunity to plot the eigenvalues as a function of k. This is

precisely the band structure that was mentioned earlier.
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The above example illustrates the recipe for going from the full-dimensional problem, which is often intractably large to a
problem that has a much more managable size, namely a single unit cell. In the present case, there’s only a single atom in
the unit cell and therefore we obtain a single band in our band structure. In more complicated problems with several atoms
in the unit cell, the band structure has as many bands as there are atoms and is therefore much more complicated[4].

[1] This is a good approximation unless the system size is so small that surface effects cannot be neglected

[2] The new index i designates each eigenfunction in the spectrum of a given ~k

[3] Adapted from Springborg
[4] For the interested reader, the Octave code relevant to this problem can be found on the course Web page


